Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 170(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38426877

RESUMO

When cultured together under standard laboratory conditions Pseudomonas aeruginosa has been shown to be an effective inhibitor of Staphylococcus aureus. However, P. aeruginosa and S. aureus are commonly observed in coinfections of individuals with cystic fibrosis (CF) and in chronic wounds. Previous work from our group revealed that S. aureus isolates from CF infections are able to persist in the presence of P. aeruginosa strain PAO1 with a range of tolerances with some isolates being eliminated entirely and others maintaining large populations. In this study, we designed a serial transfer, evolution experiment to identify mutations that allow S. aureus to survive in the presence of P. aeruginosa. Using S. aureus USA300 JE2 as our ancestral strain, populations of S. aureus were repeatedly cocultured with fresh P. aeruginosa PAO1. After eight coculture periods, S. aureus populations that survived better in the presence of PAO1 were observed. We found two independent mutations in the highly conserved S. aureus aspartate transporter, gltT, that were unique to evolved P. aeruginosa-tolerant isolates. Subsequent phenotypic testing demonstrated that gltT mutants have reduced uptake of glutamate and outcompeted wild-type S. aureus when glutamate was absent from chemically defined media. These findings together demonstrate that the presence of P. aeruginosa exerts selective pressure on S. aureus to alter its uptake and metabolism of key amino acids when the two are cultured together.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Infecções Estafilocócicas , Humanos , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus , Fibrose Cística/complicações , Mutação , Sistemas de Transporte de Aminoácidos/genética , Glutamatos/genética , Glutamatos/metabolismo , Glutamatos/farmacologia , Biofilmes
2.
bioRxiv ; 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37546966

RESUMO

Staphylococcus aureus and Pseudomonas aeruginosa are the most common bacterial pathogens isolated from cystic fibrosis (CF) related lung infections. When both of these opportunistic pathogens are found in a coinfection, CF patients tend to have higher rates of pulmonary exacerbations and experience a more rapid decrease in lung function. When cultured together under standard laboratory conditions, it is often observed that P. aeruginosa effectively inhibits S. aureus growth. Previous work from our group revealed that S. aureus from CF infections have isolate-specific survival capabilities when cocultured with P. aeruginosa. In this study, we designed a serial transfer evolution experiment to identify mutations that allow S. aureus to adapt to the presence of P. aeruginosa. Using S. aureus USA300 JE2 as our ancestral strain, populations of S. aureus were repeatedly cocultured with fresh P. aeruginosa strain, PAO1. After 8 coculture periods, S. aureus populations that survived better in the presence of PAO1 were observed. We found two independent mutations in the highly conserved S. aureus aspartate transporter, gltT, that were unique to evolved P. aeruginosa-tolerant isolates. Subsequent phenotypic testing demonstrated that gltT mutants have reduced uptake of glutamate and outcompete wild-type S. aureus when glutamate is absent from chemically-defined media. These findings together demonstrate that the presence of P. aeruginosa exerts selective pressure on S. aureus to alter its uptake and metabolism of key amino acids when the two bacteria are cultured together.

3.
Microbiol Spectr ; 10(4): e0097622, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35867391

RESUMO

Respiratory infections with bacterial pathogens remain the major cause of morbidity in individuals with the genetic disease cystic fibrosis (CF). Some studies have shown that CF patients that harbor both Staphylococcus aureus and Pseudomonas aeruginosa in their lungs are at even greater risk for more severe and complicated respiratory infections and earlier death. However, the drivers for this worse clinical condition are not well understood. To investigate the interactions between these two microbes that might be responsible for their increased pathogenic potential, we obtained 28 pairs of S. aureus and P. aeruginosa from the same respiratory samples from 18 individuals with CF. We compared the survival of each S. aureus CF isolate cocultured with its corresponding coinfecting CF P. aeruginosa to when it was cocultured with non-CF laboratory strains of P. aeruginosa. We found that the S. aureus survival was significantly higher in the presence of the coinfecting P. aeruginosa compared to laboratory P. aeruginosa strains, regardless of whether the coinfecting isolate was mucoid or nonmucoid. We also tested how a non-CF S. aureus strain, JE2, behaved with each P. aeruginosa CF isolate and found that its interaction was similar to how the CF S. aureus isolate interacted with its coinfecting P. aeruginosa. Altogether, our work suggests that interactions between S. aureus and P. aeruginosa that promote coexistence in the CF lung are isolate-dependent and that this interaction appears to be driven mainly by P. aeruginosa. IMPORTANCE Previous studies have shown that in laboratory settings, Pseudomonas aeruginosa generally kills Staphylococcus aureus. However, these bacteria are often found coinfecting the lungs of cystic fibrosis (CF) patients, which has been associated with worse patient outcomes. To investigate the interactions between these two bacteria, we competed 28 coinfection pairs obtained from the same lung samples of 18 different CF patients. We compared these results to those we previously reported of each CF S. aureus isolate against a non-CF laboratory strain of P. aeruginosa. We found that S. aureus survival against its corresponding coinfection P. aeruginosa was higher than its survival against the laboratory strain of P. aeruginosa. These results suggest that there may be selection for coexistence of these microbes in the CF lung environment. Further understanding of the interactions between P. aeruginosa and S. aureus will provide insights into the drivers of coexistence and their impact on the host.


Assuntos
Coinfecção , Fibrose Cística , Infecções por Pseudomonas , Infecções Respiratórias , Infecções Estafilocócicas , Técnicas de Cocultura , Coinfecção/microbiologia , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Humanos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Infecções Respiratórias/complicações , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
4.
J Virol ; 94(22)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32847857

RESUMO

Triple-negative breast cancer (TNBC) constitutes 10 to 15% of all breast cancer and is associated with worse prognosis than other subtypes of breast cancer. Current therapies are limited to cytotoxic chemotherapy, radiation, and surgery, leaving a need for targeted therapeutics to improve outcomes for TNBC patients. Mammalian orthoreovirus (reovirus) is a nonenveloped, segmented, double-stranded RNA virus in the Reoviridae family. Reovirus preferentially kills transformed cells and is in clinical trials to assess its efficacy against several types of cancer. We previously engineered a reassortant reovirus, r2Reovirus, that infects TNBC cells more efficiently and induces cell death with faster kinetics than parental reoviruses. In this study, we sought to understand the mechanisms by which r2Reovirus induces cell death in TNBC cells. We show that r2Reovirus infection of TNBC cells of a mesenchymal stem-like (MSL) lineage downregulates the mitogen-activated protein kinase/extracellular signal-related kinase pathway and induces nonconventional cell death that is caspase-dependent but caspase 3-independent. Infection of different MSL lineage TNBC cells with r2Reovirus results in caspase 3-dependent cell death. We map the enhanced oncolytic properties of r2Reovirus in TNBC to epistatic interactions between the type 3 Dearing M2 gene segment and type 1 Lang genes. These findings suggest that the genetic composition of the host cell impacts the mechanism of reovirus-induced cell death in TNBC. Together, our data show that understanding host and virus determinants of cell death can identify novel properties and interactions between host and viral gene products that can be exploited for the development of improved viral oncolytics.IMPORTANCE TNBC is unresponsive to hormone therapies, leaving patients afflicted with this disease with limited treatment options. We previously engineered an oncolytic reovirus (r2Reovirus) with enhanced infective and cytotoxic properties in TNBC cells. However, how r2Reovirus promotes TNBC cell death is not known. In this study, we show that reassortant r2Reovirus can promote nonconventional caspase-dependent but caspase 3-independent cell death and that the mechanism of cell death depends on the genetic composition of the host cell. We also map the enhanced oncolytic properties of r2Reovirus in TNBC to interactions between a type 3 M2 gene segment and type 1 genes. Our data show that understanding the interplay between the host cell environment and the genetic composition of oncolytic viruses is crucial for the development of efficacious viral oncolytics.


Assuntos
Morte Celular/fisiologia , Reoviridae/fisiologia , Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular , Humanos , Mitocôndrias/metabolismo , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos , Orthoreovirus de Mamíferos/genética , Reoviridae/genética , Proteínas Virais/metabolismo
5.
Microbiology (Reading) ; 166(9): 861-866, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32634088

RESUMO

The opportunistic bacterial pathogen Pseudomonas aeruginosa causes acute and chronic infections that are notoriously difficult to treat. In people with cystic fibrosis, P. aeruginosa can cause lifelong lung infections, and isolation of mucoid P. aeruginosa, resulting from the overproduction of alginate, is associated with chronic infection. The histone-like protein AlgP has previously been implicated in the control of alginate gene expression in mucoid strains, but this regulation is unclear. To explore AlgP in further detail, we deleted algP in mucoid strains and demonstrated that the deletion of algP did not result in a nonmucoid phenotype or a decrease in alginate production. We showed that the algP promoter is expressed by both the nonmucoid strain PAO1 and the isogenic mucoid strain PDO300, suggesting that there may be genes that are differentially regulated between these strains. In support of this, using RNA sequencing, we identified a small AlgP regulon that has no significant overlap between PAO1 and PDO300 and established that alginate genes were not differentially regulated by the deletion of algP. Of note, we found that deleting algP in PAO1 increased expression of the nitric oxide operon norCBD and the nitrous oxide reductase genes nosRZ and subsequently promoted growth of PAO1 under anaerobic conditions. Altogether, we have defined a narrow regulon of genes controlled by AlgP and provided evidence that alginate production is not greatly affected by AlgP, countering the long-standing premise in the field.


Assuntos
Alginatos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Pseudomonas aeruginosa/genética , Regulon , Fatores de Transcrição/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Humanos , Óxido Nítrico/metabolismo , Óperon , Regiões Promotoras Genéticas , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Fatores de Transcrição/metabolismo
6.
mBio ; 11(3)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576671

RESUMO

Staphylococcus aureus has recently overtaken Pseudomonas aeruginosa as the most commonly recognized bacterial pathogen that infects the respiratory tracts of individuals with the genetic disease cystic fibrosis (CF) in the United States. Most studies of S. aureus in CF patient lung infections have focused on a few isolates, often exclusively laboratory-adapted strains, and how they are killed by P. aeruginosa Less is known about the diversity of S. aureus CF patient lung isolates in terms of both their virulence and their interaction with P. aeruginosa To begin to address this gap, we recently sequenced 64 clinical S. aureus isolates and a reference isolate, JE2. Here, we analyzed the antibiotic resistance genotypes, sequence types, clonal complexes, spa types, agr types, and presence/absence of other known virulence factor genes of these isolates. We hypothesized that virulence phenotypes of S. aureus, namely, toxin production and the mucoid phenotype, would be lost in these isolates due to adaptation in the CF patient lung. In contrast to these expectations, we found that most isolates can lyse both rabbit and sheep blood (67.7%) and produce polysaccharide (69.2%), suggesting that these phenotypes were not lost during adaptation to the CF lung. We also identified three distinct phenotypic groups of S. aureus based on their survival in the presence of nonmucoid P. aeruginosa laboratory strain PAO1 and its mucoid derivative. Altogether, our work provides greater insight into the diversity of S. aureus isolates from CF patients, specifically the distribution of important virulence factors and their interaction with P. aeruginosa, all of which have implications in patient health.IMPORTANCEStaphylococcus aureus is now the most frequently detected recognized pathogen in the lungs of individuals who have cystic fibrosis (CF) in the United States, followed closely by Pseudomonas aeruginosa When these pathogens are found to coinfect the CF lung, patients have a significantly worse prognosis. While P. aeruginosa has been rigorously studied in the context of bacterial pathogenesis in CF, less is known about S. aureus Here, we present an in-depth study of 64 S. aureus clinical isolates from CF patients, for which we investigated genetic diversity utilizing whole-genome sequencing, virulence phenotypes, and interactions with P. aeruginosa We found that S. aureus isolated from CF lungs are phylogenetically diverse; most retain known virulence factors and vary in their interactions with P. aeruginosa (i.e., they range from being highly sensitive to P. aeruginosa to completely tolerant to it). Deepening our understanding of how S. aureus responds to its environment and other microbes in the CF lung will enable future development of effective treatments and preventative measures against these formidable infections.


Assuntos
Fibrose Cística/microbiologia , Variação Genética , Pulmão/microbiologia , Interações Microbianas , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/genética , Adolescente , Adulto , Biofilmes/crescimento & desenvolvimento , Criança , Pré-Escolar , Coinfecção/microbiologia , Genótipo , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Fenótipo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Virulência , Sequenciamento Completo do Genoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA